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The Darwin procedure in optics of layered media and the matrix theory
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Abstract

The Darwin dynamical theory of diffraction for two
beams yields a nonhomogeneous system of linear
algebraic equations with a tridiagonal matrix. It is
shown that different formulae of the two-beam Darwin
theory can be obtained by a uniform view of the basic
properties of tridiagonal matrices, their determinants
(continuants) and their close relationship to continued
fractions and difference equations. Some remarks
concerning the relation of the Darwin theory in the
three-beam case to tridiagonal block matrices are also
presented.

1. Introduction

The standard problem of optics of layered media may
be described as follows: a stack of layers is irradiated
by an external wave; each layer is characterized by its
one-dimensional scattering-length density (SLD); the
re¯ectivity and transmissivity of the whole stack have to
be computed. If the SLD of each layer is constant, the
problem can be easily solved using the standard
formulae for the propagation of a plane wave in a layer
with a constant refraction index, and Fresnel formulae
for the re¯ection and transmission of plane waves on
the boundaries between two homogeneous layers.
Sophisticated methods that simplify the algebraic
manipulations when dealing with the problem can be
found, for example, in the book by Knittl (1976).
However, the described procedures cannot be used if
the SLDs of the layers are not constant or the standard
Fresnel formulae relating to the boundaries do not hold
[e.g. for thermal neutrons or X-rays in crystals (Pinsker,
1978; Rauch & Petraschek, 1978; Sears, 1989)].

Recently, to cover such more dif®cult problems, the
classical Darwin method (Darwin, 1914) has been
generalized by many authors (Caticha, 1994; Ignatovich,
1989, 1991, 1992; Nakatani & Takahashi, 1994; Taka-
hashi & Nakatani, 1995). In contrast to the methods
developed in the above citations, we will pay attention to
the fact that the two-beam Darwin theory yields a
nonhomogeneous system of algebraic equations with a

tridiagonal matrix (x3). Thus, some properties of con-
tinuants (see Appendix A) can be widely utilized when
looking for the solution to Darwin equations.

2. The two-beam Darwin equations

First, let us consider a layer in vacuum. Whatever is its
SLD, the layer can be optically characterized by its
positively (u) and negatively (v) oriented coef®cients of
re¯ection (ru, rv) and transmission (tu, tv). (Positive
incidence is taken to be in the direction in which the z
axis increases.) Denoting the space above and below the
layer by 1 or 2, respectively, for the amplitudes of the
wave ®elds uj and uj, j � 1; 2, we have

u2 � tuu1; v1 � ruu1;

u2 � rvv2; v1 � tvv2;
�1�

see Figs. 1(a) and 1(b), respectively. The coef®cients ru,
rv, tu and tv depend on many parameters (e.g. the atomic
and structure factors of the layer, the surface quality, the
wavelength, the angle of incidence) and can be obtained
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Fig. 1. The de®nitions of the positively (a) and negatively (b) oriented
coef®cients of re¯ection and transmission. The amplitudes of the
wave ®elds uj and vj ( j � 1; 2) are given just on the borders of the
layers.
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by classical optics methods in the optical region or using
the dynamical theory of diffraction in the X-ray or
thermal-neutron regions.

Next, let us consider a stack of N layers, each layer
being characterized by the coef®cients of re¯ection ru

n, rv
n

and transmission tu
n , tv

n (n � 1; 2; . . . ;N) separated by
N ÿ 1 vacuum splits of the same width �> 0 (Fig. 2). The
stack is irradiated by the external positively oriented
wave u1 � uinc. Let the wave ®eld in the vacuum split
between the (nÿ 1)th and nth layers be described by
one negatively oriented plane wave (vn) and one posi-
tively oriented plane wave (un) only (the two-beam
Darwin theory). Then the wave ®eld in the stack is given
by the equations

u1 � uinc;

v1 � ru
1u1 � tv

1v2 exp�i �;
u2 � tu

1 u1 � rv
1v2 exp�i �;

un � tu
nÿ1unÿ1 exp�i'� � rv

nÿ1vn exp�i �
for n � 3; 4; . . . ;N; �2�

vn � ru
nun exp�i'� � tv

nvn�1 exp�i �
for n � 2; 3; . . . ;N ÿ 1;

vN � ru
NuN exp�i'�;

uN�1 � tu
NuN exp�i'�;

with ' � �2�=�o�� cos 
u and  � ÿ�2�=�o�� cos 
v. �o

is the wavelength of the radiation in vacuum, 
u and 
v

are the angles (with the axis Oz) of the wave vectors ku

and kv of the waves un and vn, respectively.
The system of equations (2) represents a nonhomo-

geneous system of 2N linear algebraic equations for the
2N amplitudes �v1; v2; . . . ; vN� and �u2; u3; . . . ; uN�1�,
the amplitude u1 of the incident wave being given.
Primarily, we are interested in the waves re¯ected �v1�
and transmitted �uN�1� by the whole stack.

Note that for 
v � �ÿ 
u (symmetrical re¯ection)
and � 6� 0 we have the original Darwin model of
re¯ection of radiation by the atomic planes of an ideal
crystal. On the other hand, putting � � 0 we have a
multilayered optical system.

The system of equations (2) can be solved by different
methods, leading obviously to the same results. In the
most common procedure the relations

un

vn

� �
�An

un�1

vn�1

� �
;

u1

v1

� �
�A1A2 . . . AN

uN�1

vN�1

� �
;

�3�

with the boundary conditions u1 � uinc and vN�1 � 0,
are derived from (2). Thus, the evaluation of v1 and uN�1

is reduced to multiplying second-order matrices. Special
attention is paid to the periodic structures where
Ai � A �i � 1; 2; . . . ;N�. Then the evaluation of the
second-order matrix AN can be performed very easily

using the Cayley±Hamilton theorem (AbeleÁs, 1950;
Perkins & Knight, 1984; Yeh, 1988). Another method
uses the fact that, in a periodic structure, equations (2)
can be considered as a system of two difference equa-
tions with boundary conditions u1 � uinc and vN�1 � 0.
This system of difference equations can be solved by the
usual ansatz un � u exp�in�� and vn � v exp�in��, which
leads to the evaluation of the eigenvectors and eigen-
values of a second-order matrix (Caticha, 1994).

In the next section (x3), we show that, when looking
for the solution to Darwin's equations (2), advantage
can be taken of some well known properties of the
tridiagonal matrices.

3. The two-beam Darwin equations and continuants

The system of the two-beam Darwin equations (2) can
be written in a matrix form as

Fig. 2. The system of two-beam Darwin equations.
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W�2�X�2� � U�2� �4�

or explicitly

ÿ1 �v
1

0 �v
1 ÿ1

ÿ1 �u
2 �v

2

�u
2 �v

2 ÿ1

ÿ1 �u
3 �v

3

�u
3

. .
.

ÿ1

ÿ1 �u
Nÿ1 �v

Nÿ1

�u
Nÿ1 �

v
Nÿ1 ÿ1

ÿ1 �u
N 0

�u
N ÿ1

0BBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCA

�

v1

v2

u2

v3

u3

..

.

uNÿ1

vN

uN

uN�1

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

�

ÿ�1û1

ÿ�u
1 û1

0

0

0

..

.

0

0

0

0

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

; �5�

where the matrix W�2� is a tridiagonal (continuant)
matrix of order 2N (see Appendix A). Further,
�u

n � ru
n exp�i'�, �v

n � rv
n exp�i �, �u

n � tu
n exp�i'�,

�v
n � tv

n exp�i � and û1 � u1 exp�ÿi'�.
The amplitudes vn and un given by (5) can be obtained

using Cramer's rule. First, we evaluate the amplitudes v1

and uN�1 of the waves re¯ected and transmitted by the
stack. To proceed in this way, we have to evaluate the
determinant of the matrix of the system (5), W�2�, and
the determinants of the matrices W1�2� and WN�1�2�,
which are constructed from W�2� by replacing the ®rst
and last column in W�2� by the column vector U�2�,
respectively. The determinant of WN�1�2� may be eval-
uated easily, giving

det WN�1�2� � �ÿ1�Nÿ1�u
1�

u
2 . . . �u

Nû1: �6�

To evaluate the determinants of W�2� and W1�2�, let us
introduce the submatrix Q of order 2N ÿ 2 and the
matrix Qu of order 2N ÿ 1,

W�2� �

ÿ1 �v
1 0 . . . 0 0 0

0 0

0 0

..

.
Q ..

.

0 0

0 0 0 . . . 0 �u
N ÿ1

0BBBBBBB@

1CCCCCCCA;

�7�

Qu �

�u
1 �v

1 0 . . . 0

�u
1

0

..

.
Q

0

0BBBBB@

1CCCCCA;
so that

W1�2� �

0

0

Qu � P 0

..

.

0

0 0 . . . 0 �u
N ÿ1

0BBBBBBB@

1CCCCCCCA;

where P � hÿû1; 1; 1; . . . ; 1i is the diagonal matrix of
order 2N ÿ 1. Then it may be seen that

det W�2� � det Q; det W1�2� � û1 det Qu: �8�
Using (6) and (8), we ®nally obtain

v1 � �det Qu= det Q�û1;

uN�1 � �ÿ1�Nÿ1���u
1 �

u
2 . . . �u

N�= det Q�û1:
�9�

The respective coef®cients of û1 in (9) yield the posi-
tively oriented coef®cients of re¯ection �RN

u � and
transmission �TN

u � of an N-layer stack²

R�N�u � det Qu= det Q; �10a�
T�N�u � �ÿ1�Nÿ1��u

1 �
u
2 . . . �u

N�= det Q: �10b�
Similar formulae could be obtained for the negatively
oriented coef®cients R�N�v and T�N�v . The equivalence of
formulae (10a) and (10b) with those yielded by the
`optical matrix method' [see equation (3)] for a system
of homogeneous layers was proved by Litzman (1983)
by generalizing the standard expression for the so-called
split ®lter.

Since both matrices Q and Qu are tridiagonal ones,
the theory of Jacobian matrices and their determinants,

² The re¯ection and transmission coef®cients in (10a) and (10b) differ
from those mostly de®ned in the literature by the phase factor
exp�ÿi'�. This modi®ed de®nition is based on the fact that the
amplitude u1 of the incident wave is de®ned on the top boundary of the
uppermost layer indexed by 1, whereas amplitudes un for n � 2; 3; . . .
are always de®ned on the bottom boundary of the corresponding layer
nÿ 1. Without this modi®cation, the formal simplicity of our ®nal
formulae would be destroyed.
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called continuants, explained in Appendix A, may be
employed when evaluating the ratios in (10a) and (10b).
Using the notation introduced in (24) in Appendix A, we
may write

Qu �D2Nÿ1��u
1; �

v
1; �

u
2; �

v
2; . . . ; �u

Nÿ1; �
v
Nÿ1; �

u
N�;

Q �D2Nÿ2��v
1; �

u
2; �

v
2; . . . ; �u

Nÿ1; �
v
Nÿ1; �

u
N�:

�11�

Then applying the rule given by (25) to (10a), we obtain

R�N�u

� D2Nÿ1��u
1; �

v
1; �

u
2; �

v
2; �

u
3; �

v
3; . . . ; �u

Nÿ1; �
v
Nÿ1; �

u
N�

D2Nÿ2��v
1; �

u
2; �

v
2; �

u
3; �

v
3; . . . ; �u

Nÿ1; �
v
Nÿ1; �

u
N�

� ��u
1D2Nÿ2��v

1; �
u
2; �

v
2; �

u
3; . . . ; �u

N�
ÿ �u

1 �
v
1D2Nÿ3��u

2; �
v
2; �

u
3; �

v
3; . . . ; �u

N�
�

� �D2Nÿ2��v
1; �

u
2; �

v
2; �

u
3; �

v
3; . . . ; �u

Nÿ1; �
v
Nÿ1; �

u
N�
�ÿ1

� �u
1 ÿ �u

1�
v
1

D2Nÿ2��v
1; �

u
2; �

v
2; �

u
3; �

v
3; . . . ; �u

N�
D2Nÿ3��u

2; �
v
2; �

u
3; �

v
3; . . . ; �u

N�
� �ÿ1

:

�12�

Using rule (25) again in the ratio of two continuants

D2Nÿ2��v
1; �

u
2; �

v
2; �

u
3; �

v
3; . . . ; �u

N�
D2Nÿ3��u

2; �
v
2; �

u
3; �

v
3; . . . ; �u

N�
;

it is clear that formula (12) for R�N�u can be expressed as a
continued fraction. [It is known that each continued
fraction can be expressed as a ratio of two continuants
(Perron, 1913)].

The coef®cients of re¯ection R�N�u and/or transmission
T�N�u of an N-layer stack may be expressed in other
useful forms. By using (25) in (12) and/or in the
respective formula for T�N�u and after rearranging the
results, we obtain the `recurrence formulae'

R�N�u � �u
1 � �u

1 �
v
1R0�Nÿ1�

u

��1ÿ �v
1R0�Nÿ1�

u �;
T�N�u � �u

1 T 0�Nÿ1�
u

��1ÿ �v
1R0�Nÿ1�

u �; �13�

where R
�N�
R and R

0�Nÿ1�
R are the positively oriented

re¯ection coef®cients of the system formed by N layers
�12 . . . N� and by N ÿ 1 layers �23 . . . N�, respectively.
T�N�u and T 0�Nÿ1�

u have a similar meaning. Re¯ectivities
and transmissivities of complex systems in the forms
of continued fractions and the `recurrence formulae'
derived by other methods can be found, for example, in
the works of Delano & Pegis (1969) and Ignatovich
(1991).

Finally, for completeness, let us present formulae for
the amplitudes un and vn of the wave ®elds in the
vacuum splits of the stack. Using Cramer's rule and
introducing continuants, we obtain from (5)

un � �ÿ1�nÿ1�u
1 �

u
2 . . . �u

nÿ1

� D2�Nÿn���v
n; �

u
n�1; . . . ; �u

N�
D2Nÿ2��v

1; �
u
2; �

v
2; . . . ; �v

Nÿ1; �
u
N�

û1

for n � 2; 3; . . . ;N ÿ 1 �14a�
uN � �ÿ1�Nÿ1 �u

1 �
u
2 . . . �u

Nÿ1

D2Nÿ2��v
1; �

u
2; �

v
2; . . . ; �v

Nÿ1; �
u
N�

û1;

�14b�
vn � �ÿ1�nÿ1�u

1 �
u
2 . . . �u

nÿ1

�D2�Nÿn��1��u
n; �

v
n; �

u
n�1; . . . ; �v

Nÿ1; �
u
N�

D2Nÿ2��v
1; �

u
2; �

v
2; . . . ; �v

Nÿ1; �
u
N�

û1

for n � 2; 3; . . . ;N: �14c�
To conclude, let us mention that to ®nd the solution of
(4), the inverse of the matrix W�2� can be used. Then

X�2� �W�2�ÿ1U�2�: �15�
How to evaluate the inverse of the tridiagonal matrix,
W�2�ÿ1, is explained in the second part of Appendix A.

4. Applications

In this section, we will apply the developed formalism to
particular physical problems and demonstrate its
advantages.

4.1. Example 1

As a simple example, let us consider a system of three
layers (123) in vacuum. In this particular case,

Q �

�v
1 ÿ1 0 0

ÿ1 �u
2 �v

2 0

0 �u
2 �v

2 ÿ1

0 0 ÿ1 �u
3

0BBB@
1CCCA;

Qu �

�u
1 �v

1 0 0 0

�u
1 �v

1 ÿ1 0 0

0 ÿ1 �u
2 �v

2 0

0 0 �u
2 �v

2 ÿ1

0 0 0 ÿ1 �u
3

0BBBBBB@

1CCCCCCA:

By iteratively using (25), we obtain directly from (12)
the re¯ectivity of the three-layer stack in the form of a
continued fraction

R�3�u � �u
1 ÿ

�u
1�

v
1

�v
1 ÿ

1

�u
2 ÿ

�u
2 �

v
2

�v
2 ÿ

1

�u
3

: �16�
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4.2. Example 2

As the next example let us consider an `incomplete'
periodic structure

� 123|{z}
1

123|{z}
2

. . . 123|{z}
p

12�

formed by Np � 3p� 2 layers where the evaluation of
the determinants of Qu and Q in (8) can be considerably
simpli®ed due to a general theorem by RoÂ zsa (1969). For
the sake of simplicity, we assume that �u

n � �v
n � �n and

�u
n � �v

n � �n for n � 1, 2 and 3. Then the periodic
continuant matrices Q (of order 2Np ÿ 2 � 6p� 2) and
Qu (of order 6p� 3) are already the symmetrical ones
and thus it is possible to use directly the results
summarized in the third part of Appendix A. Using the
notation introduced in (30), we may write

Q � D̂�1�6p�2 and Qu � D̂�2�6p�3;

where respective generating submatrices D
�i�
123456 and

matrix elements b
�i�
6 �i � 1; 2� are given by

D
�1�
123456 �

�1 ÿ1 0 0 0 0

ÿ1 �2 �2 0 0 0

0 �2 �2 ÿ1 0 0

0 0 ÿ1 �3 �3 0

0 0 0 �3 �3 ÿ1

0 0 0 0 ÿ1 �1

0BBBBBB@

1CCCCCCA
and

b
�1�
6 � ÿ�1;

and

D
�2�
123456 �

�1 �1 0 0 0 0

�1 �1 ÿ1 0 0 0

0 ÿ1 �2 �2 0 0

0 0 �2 �2 ÿ1 0

0 0 0 ÿ1 �3 �3

0 0 0 0 �3 �3

0BBBBBB@

1CCCCCCA
and

b
�2�
6 � 1:

The determinants of matrices Q and Qu can be evalu-
ated by (35). Finally, we obtain the coef®cient of
re¯ection of the `incomplete' periodic structure
(Litzman, 1983),

R�Np�
u � �3��2��2

1 ÿ �2
1� ÿ �1�Up�x� ÿ �1�2�3Upÿ1�x�

�3��1�2 ÿ 1�Up�x� ÿ �1�2��2
3 ÿ �2

3�Upÿ1�x�
;

�17�
where Uk�x� are Chebyshev polynomials [see (32)].

In most cases, thin-®lm optics deals with `complete'
periodic structures (1212 . . . 12), each ®lm being char-
acterized by a constant refraction index (Born & Wolf,
1968; Knittl, 1976; Yeh, 1988). Adopting our approach
employing the theory of periodic continuants, we may

handle more general cases by a uniform view: the
number of ®lms in each period is arbitrary, the scat-
tering-length density of a ®lm is not constant, the last
period need not be full [see submatrix D12...r of (30)].

4.3. Example 3

Finally, let us mention that the determinants of Q
and/or Qu given in (7) are polynomials in �i,

det Q � A0 �
P

i

Ai�i �
P
i;j

Aij�i�j �
P
i;j;k

Aijk�i�j�k � . . .

�18�
and similarly for det Qu. When, for example, evaluating
the coef®cient A24, we ®rst put �i � 0 in the matrix Q for
all i except 2 and 4, and then use theorems for evaluation
of the continuants. Proceeding in this way, we obtain
(Litzman & RoÂ zsa, 1984)

det Q � �ÿ1�Nÿ1 �Q�2� �Q�4� � . . .

det Qu �Q�1�u �Q�3�u � . . . ;
�19�

where

Q�1�u �
P

i

Bi�i

� �ÿ1�Nÿ1��1 � �2
1�2 � �2

1�
2
2�3 � . . .

� �2
1�

2
2 . . . �2

Nÿ1�N�;
Q�2� � P

i;j

Aij�i�j

� �ÿ1�N��1�2 � �1�
2
2�3 � �1�

2
2�

2
3�4 � . . .

� �1�
2
2�

2
3 . . . �2

Nÿ1�N � �2�3 � �2�
2
3�4

� �2�
2
3�

2
4�5 � . . .� �2�

2
3�

2
4 . . . �2

Nÿ1�N

� �Nÿ2�Nÿ1 � �Nÿ2�
2
Nÿ1�N � �Nÿ1�N�;

Q�3�u �
P
i;j;k

Bijk�i�j�k etc:

�20�

It is worth noting that by using (19) a perturbative
approach may be developed, revealing directly the
in¯uence of the re¯ection coef®cient �i of a particular
layer on the re¯ection coef®cient of the whole stack.

Let us apply formulae (20) to the study of the
re¯ectivity of a stack of thin ®lms in the soft X-ray
region (Litzman, Dub & SÆ evcÏõÂk, 1984;² Litzman &
RoÂ zsa, 1984; Litzman & SebelovaÂ , 1985). In the soft
X-ray region, the re¯ection coef®cient � of a thin ®lm
evaluated in the frame of the dynamical diffraction
theory is related to �o following from the classical
Fresnel theory (being of the order of 10ÿ3) by the
relation (Litzman, Dub & SÆ evcÏõÂk, 1984)

�=�o � �2�a=�o� cos 
o= sin��2�a=�o� cos 
o�: �21�

² Note that captions to Figs. 2 and 3 have been interchanged in this
paper.
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The right-hand side of (21) depends on the ratio of the
wave length �o and the lattice parameter of the ®lm, a,
and on the incidence angle 
o only, but not on the
refraction index of the ®lm. On the other hand, for
the corresponding transmission coef®cients, it approxi-
mately holds that � � �o. Then, expressing determinants
of matrices Q and Qu as polynomials in �i, we have
found (Litzman & RoÂ zsa, 1984) that to a good
approximation the same relation as (21) holds for the
re¯ection coef®cients of the whole stack of thin ®lms.
The same conclusion may be drawn for the optics of
thermal neutrons.

5. Conclusions and further perspectives

The Darwin procedure is, together with the approach
developed by Ewald (1916, 1917), the ®rst formulation
of the dynamical theory of diffraction. Nevertheless, it
attracts attention even 80 years after its origin. We have
shown that formulae of the two-beam Darwin theory, in
particular the re¯ectivity and transmissivity of the stack
of layers, can be obtained by a uniform view of basic
properties of tridiagonal matrices, their determinants
(called continuants), and their close relationship to
continued fractions and difference equations. A
comparison of the Bethe±Laue dynamical theory of
diffraction in a periodic system of homogeneous multi-
layers with the `optical matrix method' [see equation
(3)] has been discussed recently by Sears (1997).

Recently, the diffraction from a set of atomic layers in
the three-beam Bragg case has been studied (Takahashi
& Nakatani, 1995). In this three-beam case, we have,
instead of (3),

un

vn

wn

0@ 1A � A�n�
un�1

vn�1

wn�1

0@ 1A �22�

with boundary conditions u1 � uinc and
vN�1 � wN�1 � 0, and, consequently, equation (4)
assumes the form

W�3�X�3� � U�3�; �23�
where the matrix W�3� is a tridiagonal block matrix.
Whereas the properties of the tridiagonal matrices have
been studied for a long time, interest in the tridiagonal
block matrices arose only in the past decade (RoÂ zsa et
al., 1989). We intend to use these recent results for the
Darwin multibeam theory in a forthcoming paper.

APPENDIX A
Jacobian matrices and continuants

A1. Jacobian matrix

The quadratic matrix of the form

Dn�a1a2 . . . an�

�

a1 ÿb1 0 . . . 0 0

ÿc1 a2 ÿb2 . . . 0 0

0 ÿc2 a3 . . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 . . . anÿ1 ÿbnÿ1

0 0 0 . . . ÿcnÿ1 an

0BBBBBBBBB@

1CCCCCCCCCA
�24�

is called a Jacobian matrix or a continuant matrix. The
determinant of Dn�a1a2 . . . an� is called the continuant
and will be denoted by Dn�a1a2 . . . an�. The principal
minor of the continuant Dn�a1a2 . . . an� constructed from
its i1; i2; . . . ; ip rows and columns will be denoted by
Di1i2...ip

or Dp�ai1
ai2

. . . aip
�. Clearly,

Dn�a1a2 . . . an� � a1Dnÿ1�a2 . . . an�
ÿ b1c1Dnÿ2�a3a4 . . . an� �25�

holds. Another useful formula for the calculation of a
continuant,

Dn�a1a2 . . . an�
�Dk�a1a2 . . . ak�Dnÿk�ak�1ak�2 . . . an�
ÿ bkckDkÿ1�a1a2 . . . akÿ1�Dnÿkÿ1�ak�2ak�3 . . . an�;

�26�
can be easily derived by a famous relation due to Jacobi
[see equation (1.3) in the paper by RoÂ zsa (1969)].

By the similarity transformation with the diagonal
matrix

A � 1;
b1

c1

� �1=2

;
b1b2

c1c2

� �1=2

; . . . ;
b1b2 . . . bnÿ1

c1c2 . . . cnÿ1

� �1=2
* +

;

�27�
the matrix (24) can be transformed into a symmetrical
Jacobian matrix

ADnAÿ1

�

a1 �b1c1�1=2

�b1c1�1=2 a2 �b2c2�1=2

�b2c2�1=2
a3

. .
.

�bnÿ1cnÿ1�1=2

�bnÿ1cnÿ1�1=2 an

0BBBBBBBBB@

1CCCCCCCCCA
:

�28�
Thus in the following we shall be concerned with

symmetrical continuant matrices only.
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A2. Inverse of a symmetrical Jacobian matrix

The inverse of a symmetrical Jacobian matrix (24)
where bi � ci 6� 0 is given as (Gantmacher & Krein,
1960)

Dÿ1
n � R � �rij�

with

rij �
uivj if i � j

viuj if i � j

�
: �29�

The factors ui and vj can easily be calculated using a
simple recurrence relation (Brevilacqua et al., 1988).

A3. Symmetrical continuant

A symmetrical continuant in which ak�m � ak and
bk�m � bk is called a periodic continuant. Let us
consider the periodic continuant matrix

D̂mp�r �
1�

D12...m 0 0

ÿbm 2�
ÿbm

0 D12...m

ÿbm

ÿbm

p�

D12...m 0

ÿbm

ÿbm

0 0 D12...r

0BBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCA
�30�

where D12...m and D12...r with r<m � n are submatrices
of the same symmetrical continuant matrix.

Following equation (1.6) in the work of RoÂ zsa (1969),
det D̂mp�r � Dmp�r can be evaluated as follows. We
denote

x � �D12...m ÿ b2
mD2...mÿ1�=b1b2 . . . bm: �31�

Further, we introduce Chebyshev polynomials of the
second kind in the form of a continuant

Un�x� �

1� 2� n�
x ÿ1

ÿ1 x ÿ1

ÿ1

. .
.

ÿ1

ÿ1 x

���������������

���������������
� P�n=2�

k�0

�ÿ1�k
� nÿ k

k

�
xnÿ2k

� Qn
p�1

�xÿ 2 cos�p�=n� 1�� �32�

and the polynomials

Yn�x� � �b1b2 . . . bm�nUn�x�: �33�
Then,

Dmp �Yp�x� � b2
mD2...mÿ1Ypÿ1�x�; �34�

Dmp�r �D1...rYp�x� � b2
mb2

1 . . . b2
r Dr�2...mÿ1Ypÿ1�x�

for 1 � r � mÿ 3; �35�
Dmp�mÿ2 �D1...mÿ2Yp�x� � b2

mb2
1 . . . b2

mÿ2Ypÿ1�x�;
�36�

Dmp�mÿ1 �D1mÿ1Yp�x�: �37�
Formulae (31), (34) and (37) are valid for m> 2. For
m � 2,

x � �D12 ÿ b2
2�=b1b2 �38�

and

D2p � Yp�x� � b2
2Ypÿ1�x�; D2p�1 � D1Yp�x� �39�

hold.

We are indebted to Professor Dr P. RoÂ zsa who has
revised Appendix A. Professors M. Lenc and V. HolyÂ are
thanked for a critical reading of the manuscript and
comments and suggestions, which have improved the
paper.
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