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Abstract

The Darwin dynamical theory of diffraction for two
beams yields a nonhomogeneous system of linear
algebraic equations with a tridiagonal matrix. It is
shown that different formulae of the two-beam Darwin
theory can be obtained by a uniform view of the basic
properties of tridiagonal matrices, their determinants
(continuants) and their close relationship to continued
fractions and difference equations. Some remarks
concerning the relation of the Darwin theory in the
three-beam case to tridiagonal block matrices are also
presented.

1. Introduction

The standard problem of optics of layered media may
be described as follows: a stack of layers is irradiated
by an external wave; each layer is characterized by its
one-dimensional scattering-length density (SLD); the
reflectivity and transmissivity of the whole stack have to
be computed. If the SLD of each layer is constant, the
problem can be easily solved using the standard
formulae for the propagation of a plane wave in a layer
with a constant refraction index, and Fresnel formulae
for the reflection and transmission of plane waves on
the boundaries between two homogeneous layers.
Sophisticated methods that simplify the algebraic
manipulations when dealing with the problem can be
found, for example, in the book by Knittl (1976).
However, the described procedures cannot be used if
the SLDs of the layers are not constant or the standard
Fresnel formulae relating to the boundaries do not hold
[e.g. for thermal neutrons or X-rays in crystals (Pinsker,
1978; Rauch & Petraschek, 1978; Sears, 1989)].
Recently, to cover such more difficult problems, the
classical Darwin method (Darwin, 1914) has been
generalized by many authors (Caticha, 1994; Ignatovich,
1989, 1991, 1992; Nakatani & Takahashi, 1994; Taka-
hashi & Nakatani, 1995). In contrast to the methods
developed in the above citations, we will pay attention to
the fact that the two-beam Darwin theory yields a
nonhomogeneous system of algebraic equations with a
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tridiagonal matrix (§3). Thus, some properties of con-
tinuants (see Appendix A) can be widely utilized when
looking for the solution to Darwin equations.

2. The two-beam Darwin equations

First, let us consider a layer in vacuum. Whatever is its
SLD, the layer can be optically characterized by its
positively (z) and negatively (v) oriented coefficients of
reflection (#“,r") and transmission (¢*,¢"). (Positive
incidence is taken to be in the direction in which the z
axis increases.) Denoting the space above and below the
layer by 1 or 2, respectively, for the amplitudes of the
wave fields u; and u,j= 1, 2, we have

u, =t'u;, v, = ruy; )

u, =r'vy, vy = t'vy;

see Figs. 1(a) and 1(b), respectively. The coefficients r*,
r’, t* and ¢" depend on many parameters (e.g. the atomic
and structure factors of the layer, the surface quality, the
wavelength, the angle of incidence) and can be obtained
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Fig. 1. The definitions of the positively (a) and negatively (b) oriented
coefficients of reflection and transmission. The amplitudes of the
wave fields u; and v; (j = 1, 2) are given just on the borders of the
layers.
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by classical optics methods in the optical region or using
the dynamical theory of diffraction in the X-ray or
thermal-neutron regions.

Next, let us consider a stack of N layers, each layer
being characterized by the coefficients of reflection r;,, r},
and transmission i, ¢, (n=1,2,..., N) separated by

— 1 vacuum splits of the same width § > 0 (Fig. 2). The
stack is irradiated by the external positively oriented
wave u; = u'". Let the wave field in the vacuum split
between the (n — 1)th and nth layers be described by
one negatively oriented plane wave (v,) and one posi-
tively oriented plane wave (u,) only (the two-beam
Darwin theory). Then the wave field in the stack is given

by the equations
141 — uinc’
vy = riuy, + tjv, exp(iy),
Uy = tiuy + riv, exp(iy),
un = tzflunfl eXp(l(p) + rzflvn exp(n/r)
for n=3,4,...,N, ?2)

Vv, = rhtt, exp(ig) + 6v,,,, exp(i)
for n=2,3,...,N—1,
VN = rMNMN exp(up),
Uy = Iyuy explig),

with ¢ = 2/A,)8cos y, and ¥ = —(27/A,)Scos y,. A,
is the wavelength of the radiation in vacuum, y, and y,
are the angles (with the axis Oz) of the wave vectors k,
and k, of the waves u, and v, respectively.

The system of equations (2) represents a nonhomo-
geneous system of 2N linear algebraic equations for the
2N amplitudes (v{,Vv,,...,vy) and (u,, us, ..., Uy,q),
the amplitude u, of the incident wave being given.
Primarily, we are interested in the waves reflected (v,)
and transmitted (uy.;) by the whole stack.

Note that for y, =7 — y, (symmetrical reflection)
and § #0 we have the original Darwin model of
reflection of radiation by the atomic planes of an ideal
crystal. On the other hand, putting § =0 we have a
multilayered optical system.

The system of equations (2) can be solved by different
methods, leading obviously to the same results. In the
most common procedure the relations

u u,
( n) :An< +1>’
Vn Vn+|
u u
( 1>=A]A2...AN< N“),
Vi VN+1

inc

®)

with the boundary conditions u; =« and vy =0,
are derived from (2). Thus, the evaluation of v; and u,
is reduced to multiplying second-order matrices. Special
attention is paid to the periodic structures where
A,=A (i=1,2,...,N). Then the evaluation of the
second-order matrix AV can be performed very easily
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using the Cayley-Hamilton theorem (Abeles, 1950;
Perkins & Knight, 1984; Yeh, 1988). Another method
uses the fact that, in a periodic structure, equations (2)
can be considered as a system of two difference equa-
tions with boundary conditions u; = '™ and vy, = 0.
This system of difference equations can be solved by the
usual ansatz u, = uexp(ine) and v, = v exp(ina), which
leads to the evaluation of the eigenvectors and eigen-
values of a second-order matrix (Caticha, 1994).

In the next section (§3), we show that, when looking
for the solution to Darwin’s equations (2), advantage
can be taken of some well known properties of the
tridiagonal matrices.

3. The two-beam Darwin equations and continuants

The system of the two-beam Darwin equations (2) can
be written in a matrix form as

¢ 1\/

___ 1
.

2y

=

_u v
V]—— h u1+ tI V2

u u V 4V
l e

. Lu v i‘U
u,=t'u+riv,e

Vy =15 Uye +t2vx
u AY
| T e 2
Oz
u A\
‘rl’tnl’ l’tnl é n-1
iy
u, = tnlunle +r qv,© U,
j v
v, =r'u, e +thn+1e
7”% n
I e e Mo By /\
u
VN-I/ n+1
u u A v -
|rN»1’tN-1’rN—1’tN-1 % N-1
ue=r" ug e %Y veeV T
N=INGUNG N-1VN Uy
i N
_.u ¢
Vg Shyune
U 4Uu .V WV
|rN’tN’rN’tN é N
_4u
Ung =N Uy Ung

Fig. 2. The system of two-beam Darwin equations.
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W2)X(2) =UQ) 4)
or explicitly
-1 7
0 pf —1
-1 0 5
n ol
-1 p5 7
o
-1
-1 Py TN
Tvo1 Py-1 —1
-1 py O
w —1
Vi —pyily
V2 —Tiily
U, 0
V3 0
Us 0
x| . |= | Q)
Un—1 0
Vy 0
Uy 0
Unp 0

where the matrix W(2) is a tridiagonal (continuant)
matrix of order 2N (see Appendix A). Further,
Py = ryexplio),  p, =r,exp(iy), T, =1, explip),
70 =t exp(iy) and &, = u, exp(—ig).

The amplitudes v, and u,, given by (5) can be obtained
using Cramer’s rule. First, we evaluate the amplitudes v,
and uy,, of the waves reflected and transmitted by the
stack. To proceed in this way, we have to evaluate the
determinant of the matrix of the system (5), W(2), and
the determinants of the matrices W,(2) and Wy_,(2),
which are constructed from W(2) by replacing the first
and last column in W(2) by the column vector U(2),
respectively. The determinant of Wy ,(2) may be eval-
uated easily, giving

detWy, (2) = ()" 'eies ... i, (6)

To evaluate the determinants of W(2) and W,(2), let us
introduce the submatrix Q of order 2N — 2 and the
matrix Q, of order 2N — 1,
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—1]70...00]0
0 0
0 0
we) =| . P
. Q :
0 0
0 100...0¢%|—1
(7)
Pl 0.0
7
Q="
: Q
0
so that
0
0
Q,-P 0
Wl(z) = ’
0
00 07 | —1
where P = (—i1;,1,1,...,1) is the diagonal matrix of

order 2N — 1. Then it may be seen that
detW(2) = detQ, detW,(2) =1u,detQ,. (8)
Using (6) and (8), we finally obtain
v, =(detQ,/ det Q)i
Unp = (=D (s .. )/ det Qla,.

The respective coefficients of &, in (9) yield the posi-
tively oriented coefficients of reflection (RY) and
transmission (7T2) of an N-layer stackf

R™ = detQ,/ det Q,
TW = (=) ('t ... %)/ det Q.

©)

(10a)
(10b)

Similar formulae could be obtained for the negatively
oriented coefficients R™) and T). The equivalence of
formulae (10a) and (10b) with those yielded by the
‘optical matrix method’ [see equation (3)] for a system
of homogeneous layers was proved by Litzman (1983)
by generalizing the standard expression for the so-called
split filter.

Since both matrices Q and Q, are tridiagonal ones,
the theory of Jacobian matrices and their determinants,

+ The reflection and transmission coefficients in (10a) and (10b) differ
from those mostly defined in the literature by the phase factor
exp(—ip). This modified definition is based on the fact that the
amplitude u, of the incident wave is defined on the top boundary of the
uppermost layer indexed by 1, whereas amplitudes u,, forn =2,3, ...
are always defined on the bottom boundary of the corresponding layer
n — 1. Without this modification, the formal simplicity of our final
formulae would be destroyed.
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called continuants, explained in Appendix A, may be
employed when evaluating the ratios in (10a) and (10b).
Using the notation introduced in (24) in Appendix A, we
may write

U vV U
s PN—15> PN—1> PN)s

A V A
s PN—15 PN—15 PN)-

Qu = D2N71(:011" ,OY, pLZ" P;, ot

4 A V (11)
Q =Dy (0}, 05, P35 - - -

Then applying the rule given by (25) to (10a), we obtain

RW™)
_ Doy_1(01, P1, P55 P35 P55 055 -+ s Pt P15 PR)
Doy (0%, 05, 055 05, 055+ -+ s PX_15 Pr_15 PN
= [P Doy, 05, 05, 05 - -, OX)
— 1T Doy _5(05, 05, 05 0%, -+ OW)]
4 3 4 ] \4 3 4 ] -1
S [D2N—2(101ﬂ P25 P25 P35 P35 -+ - s PN—15> PN—15 PN ]
vV (7 Vv u Vv u -1
o wv|Dan—ap1s P55 055 P55 P35 -+ PN)
=P 07 D U AV Al AV u .
av—3(05, 03, 055 P35 -+ -5 PX)

(12)
Using rule (25) again in the ratio of two continuants

D,y (01, 05, 05, 05, 05, - ., P
Doy 3(05, 05, 0%, 05, - -5 OX)

)

it is clear that formula (12) for RV can be expressed as a
continued fraction. [It is known that each continued
fraction can be expressed as a ratio of two continuants
(Perron, 1913)].

The coefficients of reflection R and/or transmission
T™ of an N-layer stack may be expressed in other
useful forms. By using (25) in (12) and/or in the
respective formula for 7V and after rearranging the
results, we obtain the ‘recurrence formulae’

RY =pi + TR /11— piRIY),

TV = TNV 1= RNV, "
where R%V) and R;E,N_l) are the positively oriented
reflection coefficients of the system formed by N layers
(12...N) and by N —1 layers (23...N), respectively.
T™ and '™~V have a similar meaning. Reflectivities
and transmissivities of complex systems in the forms
of continued fractions and the ‘recurrence formulae’
derived by other methods can be found, for example, in
the works of Delano & Pegis (1969) and Ignatovich
(1991).

Finally, for completeness, let us present formulae for
the amplitudes u, and v, of the wave fields in the
vacuum splits of the stack. Using Cramer’s rule and
introducing continuants, we obtain from (5)

u, =(=1)"""oed T,

Doy (Prs Prgrs - -+ Py p
v u v v 1 1
Doy (0], 05, 055 o s Pl—1s PX)

for n=2,3,..., N—1 (14a)
_ T T R
uN:(_l)NlD . 1uz : N—1 . —
an—=2(01s 055 P35 -+, Prts P
(14b)
v, =(=1)""d T
% D2(N—n)+1(10;411 Ohs Phgts s Py—1> PN) 5
v v vV 4 v 1
Dyn_5(01s P55 055 -+ Pr—1» PN)
for n=2,3,...,N. (14¢)

To conclude, let us mention that to find the solution of
(4), the inverse of the matrix W(2) can be used. Then

X(22) = W2)'uQ). (15)

How to evaluate the inverse of the tridiagonal matrix,
W(2)™', is explained in the second part of Appendix A.

4. Applications

In this section, we will apply the developed formalism to
particular physical problems and demonstrate its
advantages.

4.1. Example 1

As a simple example, let us consider a system of three
layers (123) in vacuum. In this particular case,

ey -1 0 0

0= -1 o 7 0 ’
0 = p -1
0 0 -1 g

7 0 0 0

pp -1 0 0

Q=10 -1 pp 7 O

0 0 ©w py -1

0 0 0 -1 pi

By iteratively using (25), we obtain directly from (12)

the reflectivity of the three-layer stack in the form of a
continued fraction

U -V
T h

RY = pi —

(16)

V

Py —

u

P —

1

UV
Lh

vV

P ——
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4.2. Example 2

As the next example let us consider an ‘incomplete’

periodic structure
(123 123 ...123 12)
S~~~ ~—
1 2 p

formed by N, = 3p + 2 layers where the evaluation of
the determinants of Q,, and Q in (8) can be considerably
simplified due to a general theorem by Rézsa (1969). For
the sake of simplicity, we assume that p}i = p,, = p, and
=1, =71, for n=1, 2 and 3. Then the periodic
continuant matrices Q (of order 2N, —2 = 6p +2) and
Q,, (of order 6p + 3) are already the symmetrical ones
and thus it is possible to use directly the results
summarized in the third part of Appendix A. Using the
notation introduced in (30), we may write
Q=D)., and Q, =Dy,

6p+2

where respective §enerating submatrices D(l';3456 and

matrix elements bg (i =1,2) are given by

pp —1 0 0 0 0
-1 p, © O 0 0
pb |0 » pm -1 0 0
123456 — 0 0 -1 05 7 0
0 0 0 7 p3 -1
0 0 0 0 -1 p
and
bgl) = -1,
and
o 1 O 0 0 0
7 pp —1 0 0 0
D2 0O -1 p, 7 0 O
123456 — 0 0 T, 05 -1 0
0 0 0 -1 p3 1
0 o0 0 0 15 py
and
b =1.

The determinants of matrices Q and Q, can be evalu-
ated by (35). Finally, we obtain the coefficient of
reflection of the ‘incomplete’ periodic structure
(Litzman, 1983),

(07 — 17) — pl]Up(X) — 00 Up—l(x)
(oo, — DU, (x) — AV T:‘%)Up—l(x) ’
(17)
where U, (x) are Chebyshev polynomials [see (32)].
In most cases, thin-film optics deals with ‘complete’
periodic structures (1212...12), each film being char-
acterized by a constant refraction index (Born & Wolf,

1968; Knittl, 1976; Yeh, 1988). Adopting our approach
employing the theory of periodic continuants, we may

N,
R(up):
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handle more general cases by a uniform view: the
number of films in each period is arbitrary, the scat-
tering-length density of a film is not constant, the last
period need not be full [see submatrix Dy, , of (30)].

4.3. Example 3

Finally, let us mention that the determinants of Q
and/or Q, given in (7) are polynomials in p;,

detQ = A+ Aip+ 2 Ayoi0; + D Ajbilipr + - - -
i i ik

(18)

and similarly for det Q,. When, for example, evaluating
the coefficient A,,, we first put p; = 0 in the matrix Q for
all i except 2 and 4, and then use theorems for evaluation
of the continuants. Proceeding in this way, we obtain
(Litzman & Rozsa, 1984)

detQ =(-D)""'"4+0% + 0%+ ...

19
detQ, =00 4+ 0% 4+ ..., (19)
where
0 =Y Bip,
=(-D"" (0 + 10 + TGP+ -
F TG TN
Q(z) = ZAijpipj
ij
(20)

=D + p1G0s + 2T+
PTG T oy Py F PrTE 0
+ pztgrf,os +...+ pzrgti ... t,z\,_l,oN
+ Oy-208-1 F Oy-2TN-1P5 F PN-108)s
oY = ijZkBijkpipjpk elc.

It is worth noting that by using (19) a perturbative
approach may be developed, revealing directly the
influence of the reflection coefficient p; of a particular
layer on the reflection coefficient of the whole stack.

Let us apply formulae (20) to the study of the
reflectivity of a stack of thin films in the soft X-ray
region (Litzman, Dub & gevéik, 1984;1 Litzman &
Roézsa, 1984; Litzman & Sebelovd, 1985). In the soft
X-ray region, the reflection coefficient p of a thin film
evaluated in the frame of the dynamical diffraction
theory is related to p° following from the classical
Fresnel theory (being of the order of 107°) by the
relation (Litzman, Dub & Sevcik, 1984)

p/p° = (2ma/h,)cosy,/sin[2wa/h,)cosy,].  (21)

+ Note that captions to Figs. 2 and 3 have been interchanged in this
paper.
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The right-hand side of (21) depends on the ratio of the
wave length A, and the lattice parameter of the film, a,
and on the incidence angle y, only, but not on the
refraction index of the film. On the other hand, for
the corresponding transmission coefficients, it approxi-
mately holds that T = 7°. Then, expressing determinants
of matrices Q and Q, as polynomials in p;, we have
found (Litzman & Roézsa, 1984) that to a good
approximation the same relation as (21) holds for the
reflection coefficients of the whole stack of thin films.
The same conclusion may be drawn for the optics of
thermal neutrons.

5. Conclusions and further perspectives

The Darwin procedure is, together with the approach
developed by Ewald (1916, 1917), the first formulation
of the dynamical theory of diffraction. Nevertheless, it
attracts attention even 80 years after its origin. We have
shown that formulae of the two-beam Darwin theory, in
particular the reflectivity and transmissivity of the stack
of layers, can be obtained by a uniform view of basic
properties of tridiagonal matrices, their determinants
(called continuants), and their close relationship to
continued fractions and difference equations. A
comparison of the Bethe-Laue dynamical theory of
diffraction in a periodic system of homogeneous multi-
layers with the ‘optical matrix method’ [see equation
(3)] has been discussed recently by Sears (1997).

Recently, the diffraction from a set of atomic layers in
the three-beam Bragg case has been studied (Takahashi
& Nakatani, 1995). In this three-beam case, we have,
instead of (3),

u, Uyt
Vn = A(l’l) Vn+l (22)
Wn wn+l

with boundary conditions u, = u™ and

V41 =Wy =0, and, consequently, equation (4)
assumes the form

WE)X@E) = UE), (23)
where the matrix W(3) is a tridiagonal block matrix.
Whereas the properties of the tridiagonal matrices have
been studied for a long time, interest in the tridiagonal
block matrices arose only in the past decade (Rézsa et
al., 1989). We intend to use these recent results for the
Darwin multibeam theory in a forthcoming paper.

APPENDIX A
Jacobian matrices and continuants

Al. Jacobian matrix

The quadratic matrix of the form

DARWIN PROCEDURE AND THE MATRIX THEORY

D,(aa,...a,)

a, —b; 0 o 0
-G a -b,
0 ) as
a, 4 _bnfl
—Ch a,

(24)

is called a Jacobian matrix or a continuant matrix. The
determinant of D,(a;a,...a,) is called the continuant
and will be denoted by D,(a;a,...a,). The principal
minor of the continuant D, (a,4, . . . a,) constructed from
its 7y, i, ...,i, rows and columns will be denoted by

>y
D or D,(a;a;, .. .aip). Clearly,

iy,
D,(aa,...a,)=a,D,_((a,...a,)

(25)

—bie\D, ,(asay. . .a,)

holds. Another useful formula for the calculation of a

continuant,

D,(aa,...a,)

=Di(a\a,...a;)D, (4 1arss - - - ay)
— b Dyy(@yay .. a_)D, (100445 - - - a),

(26)

can be easily derived by a famous relation due to Jacobi

[see equation (1.3) in the paper by Rézsa (1969)].

By the similarity transformation with the diagonal
matrix

1/2 1/2 1/2
A-l1 by b,b, bb,...b,_;
g "\ T\ ey ’
@7)
the matrix (24) can be transformed into a symmetrical
Jacobian matrix
AD A"
. (blcl)l/z
(blc1)1/2 a (b2C2)1/2
(bzcz)l/z a3

(bnflcnfl)l/z
(bn—lcn—l)l/2 a

n

(28)

Thus in the following we shall be concerned with
symmetrical continuant matrices only.
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A2. Inverse of a symmetrical Jacobian matrix

The inverse of a symmetrical Jacobian matrix (24)
where b, =¢; # 0 is given as (Gantmacher & Krein,
1960)

D,'=R= (rij)

n
with

ifi<j

iz (29)

Uy,
r; =
] Vil

The factors u; and v; can easily be calculated using a

simple recurrence relation (Brevilacqua et al., 1988).

A3. Symmetrical continuant

A symmetrical continuant in which a, , = a, and
bii, =b, is called a periodic continuant. Let us
consider the periodic continuant matrix

(30)

where D, ,, and Dy, , with r <m < n are submatrices
of the same symmetrical continuant matrix.

Following equation (1.6) in the work of Rézsa (1969),
detD,,,., =D can be evaluated as follows. We
denote

mp+r

X = (D12...m - bilDZ...mfl)/ble <oby, (31)

Further, we introduce Chebyshev polynomials of the
second kind in the form of a continuant

619
1 2 n)
x -1
-1 x -1
U,(x) = -1
-1
-1 x
(n/2) —k
= i1 e
k=0 k
= [][x —2cos(pm/n + 1)] (32)
p=1
and the polynomials
Yn(x) = (ble e bm)n Un(x)’ (33)
Then,
Dmp = Yp(x) + banZ.“m—lYp—l(x)’ (34)

Dypir =Dy Y, (x) + bbb,y Y, ,(x)
for 1<r<m-3, (35)
,DmermfZ = Dlu.mfZYp(x) + b;znbf E biszpq (%),
(36)
Dmp+n1—1 = Dlm—lyp(x)' (37)

Formulae (31), (34) and (37) are valid for m > 2. For
m=2,

x = (D, — b3)/byb, (38)

and

D,, =Y,(x) + Y, (x), D,

ol = DlYp(x)

(39)
hold.

We are indebted to Professor Dr P. Rézsa who has
revised Appendix A. Professors M. Lenc and V. Holy are
thanked for a critical reading of the manuscript and
comments and suggestions, which have improved the

paper.
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